[go: up one dir, main page]

login
A210211
Triangle of coefficients of polynomials u(n,x) jointly generated with A210212; see the Formula section.
3
1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 14, 19, 16, 1, 6, 21, 42, 42, 32, 1, 7, 30, 72, 114, 89, 64, 1, 8, 40, 120, 216, 290, 184, 128, 1, 9, 52, 178, 414, 593, 706, 375, 256, 1, 10, 65, 260, 670, 1292, 1531, 1666, 758, 512, 1, 11, 80, 355, 1090, 2247, 3754, 3782
OFFSET
1,2
COMMENTS
Row n starts with n and ends with 2^n followed by 1.
n-th row sum: F(2k), where F=A000045 (Fibonacci numbers)
Alternating row sums are signed products of two Fibonacci numbers.
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...1
3...4....1
4...8....8....1
5...14...19...16...1
First three polynomials u(n,x): 1, 2 + x, 3 + 4x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210211 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210212 *)
CROSSREFS
Sequence in context: A180378 A208341 A201634 * A283054 A247358 A297224
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 19 2012
STATUS
approved