[go: up one dir, main page]

login
A210039
Array of coefficients of polynomials u(n,x) jointly generated with A210040; see the Formula section.
3
1, 3, 6, 1, 10, 5, 15, 15, 1, 21, 35, 7, 28, 70, 28, 1, 36, 126, 84, 9, 45, 210, 210, 45, 1, 55, 330, 462, 165, 11, 66, 495, 924, 495, 66, 1, 78, 715, 1716, 1287, 286, 13, 91, 1001, 3003, 3003, 1001, 91, 1, 105, 1365, 5005, 6435, 3003, 455, 15, 120, 1820
OFFSET
1,2
COMMENTS
Every term is a binomial coefficient.
Row sums: A000225
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, writing the general term as T(n,m),
T(n,k)=C(n,2k) for 1<=k<=floor[(n+1)/2], for n>=1.
EXAMPLE
First eight rows:
1
3
6....1
10...5
15...15....1
21...35....7
28...70....28...1
36...126...84...9
First five polynomials u(n,x):
1
3
6 + x
10 + 5x
21 + 35x + 7x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210039 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210040 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Mar 17 2012
STATUS
approved