[go: up one dir, main page]

login
A208345
Triangle of coefficients of polynomials v(n,x) jointly generated with A208344; see the Formula section.
5
1, 0, 3, 0, 1, 7, 0, 1, 3, 17, 0, 1, 3, 10, 41, 0, 1, 3, 11, 30, 99, 0, 1, 3, 12, 35, 87, 239, 0, 1, 3, 13, 40, 108, 245, 577, 0, 1, 3, 14, 45, 130, 322, 676, 1393, 0, 1, 3, 15, 50, 153, 406, 938, 1836, 3363, 0, 1, 3, 16, 55, 177, 497, 1236, 2682, 4925, 8119, 0, 1
OFFSET
1,3
COMMENTS
row sums, u(n,1): (1,2,5,13,...), odd-indexed Fibonacci numbers
row sums, v(n,1): (1,3,8,21,...), even-indexed Fibonacci numbers
As triangle T(n,k) with 0<=k<=n, it is (0, 1/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
(Start)- As triangle T(n,k), 0<=k<=n :
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-2) - 2*T(n-2,k-1) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1+(y-1)*x)/(1-(1+2*y)*x+y*(2-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A152167(n), A000007(n), A001906(n+1), A003948(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A078057(n), A001906(n+1), A000244(n), A081567(n), A083878(n), A165310(n) for x = 0, 1, 2, 3, 4, 5 respectively. (END) - Philippe Deléham, Feb 26 2012
EXAMPLE
First five rows:
1
0...3
0...1...7
0...1...3...17
0...1...3...10...41
First five polynomials u(n,x):
1, 3x, x + 7x^2, x + 3x^2 + 17x^3, x + 3x^2 + 10x^3 +
41x^4.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208344 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208345 *)
Table[u[n, x] /. x -> 1, {n, 1, z}]
Table[v[n, x] /. x -> 1, {n, 1, z}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 25 2012
STATUS
approved