OFFSET
0,2
COMMENTS
Riordan array (1/(1-5*x+x^2), x/(1-5*x+x^2)).
Subtriangle of triangle given by (0, 5, -1/5, 1/5, 0, 0, 0, 0, 0, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4,5} containing k-1 letters equal 5 and avoiding 01. - Milan Janjic, Dec 20 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
EXAMPLE
Triangle begins :
1
5, 1
24, 10, 1
115, 73, 15, 1
551, 470, 147, 20, 1
2640, 2828, 1190, 246, 25, 1
12649, 16310, 8631, 2400, 370, 30, 1
...
Triangle (0, 5, -1/5, 1/5, 0, 0, 0,...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 5, 1
0, 24, 10, 1
0, 115, 73, 15, 1
0, 551, 470, 147, 20, 1
0, 2640, 2828, 1190, 246, 25, 1
...
MATHEMATICA
With[{n = 8}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 5 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
PROG
(PARI) row(n) = Vecrev(polchebyshev(n, 2, (x+5)/2)); \\ Michel Marcus, Apr 26 2018
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Feb 20 2012
STATUS
approved