OFFSET
1,1
COMMENTS
The monic polynomials y(n,x) having coefficients in {-1,0,1} are matched to the set N of positive integers as follows. First, the monic polynomials p(n,x) having coefficients in {0,1} are matched to N as in A206074; i.e., the polynomial x^d(0) + x^d(1) + ... + d(n), where d(i) is 0 or 1 for 0<=i<=n and d(0)=1, matches the binary number d(0)d(1)...d(n). Then monic polynomials having at least one negative coefficient are then inserted among the polynomials p(n,x), as follows: x-1 goes between x and x+1, and for k>1, the polynomials x^k-p(n,x), for 0<n<2^k, go between x^k and x^k+1, in this order: x^k-p(1,x), x^k-p(2,x),..., x^k-p(2^k-1,x). A program in the Mathematica section generates the resulting polynomials in the order just described. The n-th polynomial, denoted here as y(n,x), can be obtained as y[[n]] from the program. The first 11 polynomials, marked "yes" if irreducible over the field of rational numbers, are shown here:
n ..... y(n,x) ... irreducible
1 ..... 1 ........ no
2 ..... x ........ yes
3 ..... 1+x ...... yes
4 ..... x^2 ...... no
5 .... -1+x^2 .... no
6 .... -x+x^2 .... no
7 .... -1-x+x^2 .. yes
8 ..... 1+x^2 .... yes
9 ..... x+x^2 .... no
10 .... 1+x+x^2 .. yes
11 .... x^3 ...... no
...
Guide to sequences based on the polynomials y(n,x):
A206822, irreducible
A206829, number of distinct factors
A207187, multiples of x+1
A207188, multiples of x
A207189, multiples of x-1
A207190, multiples of x^2+1
A207191, even: y(n,-x)=y(n,x)
A207192, odd: y(n,-x)=-y(n,x)
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]];
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]];
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]];
q2[n_] := p[n - f[k] + 2];
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
w = {}; Do[n++; If[IrreduciblePolynomialQ[y[[n]]], AppendTo[w, n]], {n, 200}]
w (* A206821 *)
Complement[Range[200], w] (* A206822 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 12 2012
STATUS
approved