[go: up one dir, main page]

login
A205726
Number of semiprimes <= n^2.
4
0, 1, 3, 6, 9, 13, 17, 22, 26, 34, 40, 48, 56, 62, 75, 82, 90, 103, 114, 126, 135, 149, 164, 179, 190, 202, 220, 236, 253, 270, 289, 304, 320, 340, 360, 381, 404, 425, 443, 462, 484, 508, 533, 556, 581, 604, 634, 655, 678, 709, 738, 761, 783, 813, 846, 881
OFFSET
1,3
COMMENTS
See A205727 and A205728 for related sequences and relationship to Goldbach conjecture.
LINKS
FORMULA
a(n) = A072000(A000290(n)). - Michel Marcus, Sep 02 2013
MATHEMATICA
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 100; t = Select[Range[nn^2], SemiPrimeQ]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* T. D. Noe, Jan 30 2012 *)
Module[{nn=60, sp}, sp=Accumulate[Table[If[PrimeOmega[n]==2, 1, 0], {n, nn^2}]]; Table[sp[[i^2]], {i, nn}]] (* Harvey P. Dale, May 29 2014 *)
PROG
(Python)
from sympy import prime, primepi
def A205726(n): return int(sum(primepi(n**2//prime(k))-k+1 for k in range(1, primepi(n)+1))) # Chai Wah Wu, Jul 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Keith Backman, Jan 30 2012
STATUS
approved