[go: up one dir, main page]

login
A201588
Decimal expansion of greatest x satisfying 4*x^2 = csc(x) and 0 < x < Pi.
3
3, 1, 1, 5, 8, 3, 9, 0, 5, 1, 2, 7, 6, 2, 5, 3, 5, 2, 1, 1, 3, 1, 0, 8, 5, 0, 1, 5, 1, 9, 5, 2, 0, 8, 2, 5, 8, 7, 8, 1, 1, 1, 2, 0, 9, 6, 5, 8, 8, 8, 1, 7, 4, 0, 1, 0, 7, 7, 2, 8, 9, 3, 9, 0, 0, 7, 8, 2, 4, 7, 0, 2, 2, 4, 1, 3, 9, 2, 7, 8, 4, 1, 4, 1, 9, 7, 4, 9, 9, 3, 0, 3, 8, 8, 6, 8, 6, 2, 4
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.6448974755436738344433573900444745201701368...
greatest: 3.1158390512762535211310850151952082587811...
MATHEMATICA
a = 4; c = 0;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
RealDigits[r] (* A201587 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
RealDigits[r] (* A201588 *)
PROG
(PARI) a=4; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
CROSSREFS
Cf. A201564.
Sequence in context: A118538 A141523 A285808 * A336858 A086385 A295222
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved