[go: up one dir, main page]

login
A201575
Decimal expansion of greatest x satisfying x^2 + 7 = csc(x) and 0 < x < Pi.
3
3, 0, 8, 0, 9, 2, 0, 2, 3, 2, 2, 9, 5, 2, 0, 6, 8, 0, 4, 5, 5, 9, 3, 5, 8, 4, 9, 8, 2, 1, 2, 7, 5, 3, 7, 0, 1, 0, 8, 7, 2, 6, 9, 9, 6, 9, 0, 8, 2, 4, 2, 1, 1, 8, 5, 7, 5, 7, 2, 2, 8, 1, 7, 4, 8, 5, 3, 8, 9, 4, 3, 8, 2, 4, 7, 7, 5, 0, 5, 0, 9, 0, 3, 9, 8, 7, 9, 1, 5, 9, 7, 4, 0, 2, 6, 4, 8, 9, 4
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.14292758299392086700431044307554748240884...
greatest: 3.08092023229520680455935849821275370108...
MATHEMATICA
a = 1; c = 7;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
RealDigits[r] (* A201574 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201575 *)
PROG
(PARI) a=1; c=7; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A201564.
Sequence in context: A013421 A011081 A209491 * A194796 A147600 A022895
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved