[go: up one dir, main page]

login
A201521
Decimal expansion of least x satisfying 6*x^2 - 1 = sec(x) and 0 < x < Pi.
3
6, 0, 8, 0, 5, 4, 4, 7, 7, 9, 9, 7, 9, 1, 3, 0, 5, 3, 3, 2, 7, 9, 9, 5, 7, 2, 2, 5, 1, 0, 8, 9, 7, 6, 1, 7, 8, 8, 5, 3, 2, 9, 6, 8, 8, 0, 9, 3, 5, 3, 6, 0, 8, 7, 7, 7, 4, 5, 4, 0, 5, 6, 5, 6, 6, 4, 3, 4, 7, 5, 2, 1, 6, 4, 7, 2, 0, 8, 0, 8, 5, 1, 2, 1, 0, 0, 0, 3, 6, 7, 9, 4, 8, 7, 2, 9, 3, 4, 4
OFFSET
0,1
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.60805447799791305332799572251089761...
greatest: 1.489480656731833320399126017677317...
MATHEMATICA
a = 6; c = -1;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
RealDigits[r] (* A201521 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201522 *)
CROSSREFS
Cf. A201397.
Sequence in context: A320376 A059956 A245700 * A011393 A066362 A365432
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 02 2011
STATUS
approved