[go: up one dir, main page]

login
A201292
Decimal expansion of x satisfying 3*x^2 + 1 = cot(x) and 0 < x < Pi.
2
5, 1, 1, 0, 2, 8, 9, 6, 8, 8, 6, 7, 1, 8, 8, 6, 5, 4, 9, 8, 9, 5, 9, 1, 1, 4, 8, 1, 1, 1, 0, 4, 9, 3, 6, 7, 2, 8, 6, 0, 7, 2, 8, 6, 6, 0, 2, 7, 8, 4, 9, 4, 5, 3, 8, 8, 1, 2, 8, 3, 1, 8, 8, 7, 6, 0, 8, 9, 4, 3, 3, 9, 7, 9, 1, 9, 1, 4, 1, 1, 7, 4, 2, 6, 6, 6, 7, 8, 0, 9, 7, 1, 3, 8, 5, 3, 2, 5, 1
OFFSET
0,1
COMMENTS
See A201280 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=0.5110289688671886549895911481110493672...
MATHEMATICA
a = 3; c = 1;
f[x_] := a*x^2 + c; g[x_] := Cot[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A201292 *)
CROSSREFS
Cf. A201280.
Sequence in context: A346081 A137373 A220962 * A348975 A271343 A086464
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 29 2011
STATUS
approved