[go: up one dir, main page]

login
A200235
Decimal expansion of least x satisfying 3*x^2 - 2*cos(x) = 4*sin(x), negated.
3
3, 7, 1, 1, 2, 2, 3, 4, 9, 4, 6, 9, 2, 7, 2, 8, 0, 5, 3, 3, 4, 1, 9, 9, 9, 9, 6, 8, 8, 0, 9, 3, 8, 5, 6, 5, 6, 5, 1, 2, 3, 2, 4, 3, 8, 8, 6, 7, 4, 2, 5, 0, 8, 9, 6, 7, 6, 3, 4, 5, 2, 4, 2, 0, 1, 5, 5, 2, 9, 8, 3, 5, 9, 4, 0, 9, 7, 0, 6, 9, 2, 5, 8, 1, 2, 3, 2, 9, 9, 9, 3, 5, 7, 3, 5, 1, 3, 4, 1
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.37112234946927280533419999688093...
greatest x: 1.217245428945459027693245863545...
MATHEMATICA
a = 3; b = -2; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.38, -.37}, WorkingPrecision -> 110]
RealDigits[r] (* A200235 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A200236 *)
PROG
(PARI) a=3; b=-2; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
CROSSREFS
Cf. A199949.
Sequence in context: A048292 A072450 A085785 * A127929 A228147 A200922
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved