[go: up one dir, main page]

login
A200027
Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = sin(x).
3
1, 3, 1, 4, 4, 8, 5, 6, 0, 9, 1, 9, 7, 7, 6, 1, 9, 6, 5, 5, 1, 9, 2, 1, 9, 8, 6, 7, 6, 1, 0, 9, 1, 0, 6, 0, 0, 1, 2, 8, 8, 8, 9, 4, 4, 1, 4, 1, 6, 8, 4, 7, 5, 3, 8, 0, 0, 2, 1, 2, 0, 7, 0, 0, 4, 7, 7, 1, 9, 8, 2, 3, 4, 9, 0, 0, 2, 9, 7, 4, 5, 7, 6, 7, 9, 0, 4, 2, 7, 1, 0, 0, 5, 0, 1, 4, 0, 6, 8
OFFSET
1,2
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.9559087984816134135373014395844...
greatest x: 1.31448560919776196551921986761091...
MATHEMATICA
a = 1; b = -3; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110]
RealDigits[r] (* A200026 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.31, 1.34}, WorkingPrecision -> 110]
RealDigits[r] (* A200027 *)
PROG
(PARI) a=1; b=-3; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
CROSSREFS
Cf. A199949.
Sequence in context: A277129 A036412 A363569 * A370807 A298890 A016473
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved