[go: up one dir, main page]

login
A199398
XOR of the first n odd numbers.
2
1, 2, 7, 0, 9, 2, 15, 0, 17, 2, 23, 0, 25, 2, 31, 0, 33, 2, 39, 0, 41, 2, 47, 0, 49, 2, 55, 0, 57, 2, 63, 0, 65, 2, 71, 0, 73, 2, 79, 0, 81, 2, 87, 0, 89, 2, 95, 0, 97, 2, 103, 0, 105, 2, 111, 0, 113, 2, 119, 0, 121, 2, 127, 0, 129, 2, 135, 0, 137, 2, 143, 0, 145, 2, 151, 0, 153, 2, 159, 0, 161, 2, 167, 0, 169, 2, 175, 0, 177, 2, 183, 0, 185, 2, 191
OFFSET
1,2
LINKS
FORMULA
G.f.: x*(1 + 2*x + 6*x^2 - 2*x^3 + x^4)/((1-x^2)*(1-x^4)).
EXAMPLE
a(2) = 1 XOR 3 = 2; a(3) = 1 XOR 3 XOR 5 = 7; a(4) = 1 XOR 3 XOR 5 XOR 7 = 0.
MAPLE
a := proc(n) local u, b, w, k;
u := 1; w := 1; b := true;
for k from 2 to n do
u := u + 2;
w := u + `if`(b, -w, +w);
b := not b;
od; w end:
seq(a(n), n=1..95); # Peter Luschny, Dec 31 2014
MATHEMATICA
With[{c=Range[1, 201, 2]}, Table[BitXor@@Take[c, n], {n, 100}]] (* Harvey P. Dale, Nov 19 2011 *)
PROG
(PARI) a(n)=if(n==1, 1, bitxor(a(n-1), 2*n-1))
(PARI) Vec((1 + 2*x + 6*x^2 - 2*x^3 + x^4)/(1-x^2)/(1-x^4)+O(x^99)) \\ Charles R Greathouse IV, Dec 31 2014
(Python)
from operator import xor
from functools import reduce
def A199398(n): return reduce(xor, range(1, n<<1, 2)) # Chai Wah Wu, Jul 09 2022
CROSSREFS
Cf. A126084 (XOR of first n primes).
Sequence in context: A196833 A245224 A016638 * A296453 A081544 A011294
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 05 2011
STATUS
approved