[go: up one dir, main page]

login
A199159
Decimal expansion of x>0 satisfying 3*x^2+3*sin(x)=1.
3
2, 6, 5, 8, 0, 1, 6, 2, 7, 1, 9, 8, 3, 4, 7, 9, 8, 1, 5, 8, 3, 1, 2, 9, 6, 9, 2, 0, 3, 4, 2, 7, 7, 3, 3, 1, 0, 9, 4, 2, 5, 9, 8, 1, 8, 9, 2, 7, 7, 1, 4, 0, 5, 3, 9, 9, 3, 5, 9, 4, 6, 6, 6, 3, 9, 9, 3, 0, 9, 7, 9, 2, 6, 1, 6, 1, 5, 6, 7, 4, 6, 9, 5, 6, 1, 5, 3, 8, 1, 3, 7, 4, 8, 7, 3, 7, 9, 6, 4
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.1082694473937105467280082158614997423379...
positive: 0.2658016271983479815831296920342773310942...
MATHEMATICA
a = 3; b = 3; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /.
FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199158 *)
r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110]
RealDigits[r] (* A199159 *)
CROSSREFS
Cf. A198866.
Sequence in context: A107822 A094514 A171031 * A175293 A021083 A244928
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
STATUS
approved