[go: up one dir, main page]

login
A198443
Conjectured record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).
3
3, 4, 11, 26, 37, 368, 1828, 2180, 7825, 8177, 8217, 71393, 72481, 75154, 118409, 175485, 203697, 206370, 1049148, 1058224, 1843945, 1846618, 8186369, 8197633, 9600802, 96020524, 169503449, 294638801, 305158594, 305192969, 657099024
OFFSET
1,1
COMMENTS
Distance d is equal to 0 when x = k^2 and y = k^5.
Only the values of x < 10^8 have been searched/
For x values see A198444.
For y values see A198445.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of a positive integer x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).
FORMULA
a(n) = (A198445(n))^2 - (A198444(n))^5.
MATHEMATICA
max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Artur Jasinski, Oct 25 2011
STATUS
approved