[go: up one dir, main page]

login
A197411
Decimal expansion of least x > 0 having sin(Pi*x/4) = sin(2*x/3)^2.
2
2, 1, 9, 4, 2, 3, 2, 9, 1, 9, 0, 1, 6, 9, 1, 9, 1, 4, 4, 4, 7, 4, 1, 6, 4, 0, 9, 4, 9, 3, 4, 0, 8, 4, 2, 1, 5, 8, 8, 8, 0, 2, 1, 6, 0, 3, 0, 6, 8, 3, 7, 9, 9, 6, 9, 1, 4, 7, 7, 4, 8, 0, 0, 9, 3, 5, 2, 7, 5, 8, 6, 8, 6, 0, 7, 7, 7, 8, 5, 9, 5, 4, 3, 6, 7, 3, 0, 8, 6, 2, 5, 8, 2, 9, 9, 8, 8, 7, 4
OFFSET
1,1
COMMENTS
The Mathematica program includes a graph. See A197133 for a guide to least x > 0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.
EXAMPLE
x=2.1942329190169191444741640949340842158...
MATHEMATICA
b = Pi/4; c = 2/3; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 2.19, 2.195},
WorkingPrecision -> 200]
RealDigits[t] (* A197411 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 3.1}]
CROSSREFS
Cf. A197133.
Sequence in context: A249264 A188108 A166890 * A124905 A371939 A293417
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 14 2011
STATUS
approved