[go: up one dir, main page]

login
A197013
Decimal expansion of the shortest distance from x axis through (1,4) to y axis.
2
6, 6, 0, 3, 6, 6, 1, 0, 2, 4, 2, 3, 4, 0, 2, 9, 5, 8, 5, 8, 8, 6, 9, 4, 5, 2, 3, 7, 2, 9, 2, 8, 6, 5, 4, 8, 4, 8, 1, 7, 6, 2, 3, 2, 7, 9, 8, 7, 9, 1, 0, 6, 8, 1, 2, 6, 8, 1, 1, 8, 6, 7, 3, 9, 8, 5, 2, 0, 9, 7, 6, 3, 9, 1, 0, 5, 6, 7, 4, 1, 1, 1, 6, 6, 7, 8, 7, 8, 2, 1, 3, 3, 0, 7, 3, 1, 5, 8, 0, 2
OFFSET
1,1
COMMENTS
See A197008 for a discussion and guide to related sequences.
EXAMPLE
d=6.60366102423402958588694523729286548481762327...
x-intercept=(3.5198...,0)
y-intercept=(0,5.5874...)
MATHEMATICA
f[x_] := x^2 + (k*x/(x - h))^2; t = h + (h*k^2)^(1/3);
h = 1; k = 4; d = N[f[t]^(1/2), 100]
RealDigits[d] (* A197013 *)
x = N[t] (* x-intercept *)
y = N[k*t/(t - h)] (* y-intercept *)
Show[Plot[k + k (x - h)/(h - t), {x, 0, t}],
ContourPlot[(x - h)^2 + (y - k)^2 == .003, {x, 0, 4}, {y, 0, 5}], PlotRange -> All, AspectRatio -> Automatic]
CROSSREFS
Cf. A197008.
Sequence in context: A005597 A281056 A273989 * A329092 A081825 A272648
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 10 2011
STATUS
approved