[go: up one dir, main page]

login
A196827
Decimal expansion of the least x>0 satisfying 1/(1+x^2)=3*sin(x).
6
3, 0, 9, 1, 5, 4, 9, 3, 3, 5, 5, 8, 9, 7, 2, 5, 7, 9, 2, 5, 2, 5, 3, 4, 5, 2, 4, 1, 8, 9, 6, 4, 0, 4, 3, 0, 0, 8, 1, 3, 4, 9, 4, 2, 0, 3, 9, 0, 9, 1, 3, 3, 7, 3, 7, 4, 3, 3, 9, 3, 4, 6, 8, 0, 0, 7, 1, 1, 5, 8, 5, 1, 4, 2, 9, 6, 6, 0, 2, 9, 9, 9, 9, 3, 2, 8, 9, 6, 2, 5, 5, 0, 5, 3, 4, 7, 8, 9, 4, 5
OFFSET
0,1
EXAMPLE
x=0.3091549335589725792525345241896404300813494203...
MATHEMATICA
Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196825 *)
t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196826 *)
t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196827 *)
t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196828 *)
t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196829 *)
t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196830 *)
CROSSREFS
Cf. A196832.
Sequence in context: A217764 A096429 A196622 * A243262 A191661 A296487
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
STATUS
approved