[go: up one dir, main page]

login
A196550
Decimal expansion of the number x satisfying x*2^x=3.
5
1, 2, 5, 6, 0, 5, 8, 6, 5, 9, 3, 9, 1, 7, 4, 5, 2, 3, 8, 0, 2, 4, 1, 6, 7, 4, 6, 2, 3, 4, 2, 1, 3, 3, 7, 1, 1, 1, 1, 3, 3, 3, 7, 0, 2, 0, 0, 8, 9, 6, 5, 5, 8, 6, 4, 3, 5, 6, 3, 0, 0, 6, 3, 5, 6, 5, 9, 0, 4, 7, 5, 1, 6, 1, 5, 9, 4, 3, 5, 6, 2, 7, 3, 1, 8, 1, 8, 3, 0, 3, 8, 3, 7, 6, 4, 6, 6, 6, 4, 2
OFFSET
1,2
EXAMPLE
x=1.25605865939174523802416746234213371111333...
MATHEMATICA
Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A104748 *)
t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196549 *)
t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196550 *)
t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196551 *)
t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196552 *)
t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196553 *)
RealDigits[ ProductLog[ Log[8] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)
CROSSREFS
Sequence in context: A074636 A368388 A127598 * A011037 A111987 A004650
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
STATUS
approved