[go: up one dir, main page]

login
A195946
Powers of 11 which have no zero in their decimal expansion.
23
1, 11, 121, 1331, 14641, 1771561, 19487171, 214358881, 2357947691, 3138428376721, 34522712143931, 379749833583241, 4177248169415651, 45949729863572161, 5559917313492231481, 4978518112499354698647829163838661251242411
OFFSET
1,2
COMMENTS
Probably finite. Is 4978518112499354698647829163838661251242411 the largest term?
LINKS
M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
C. Rivera, Puzzle 607. A zeroless Prime power, on primepuzzles.net, Sept. 24, 2011.
W. Schneider, NoZeros: Powers n^k without Digit Zero (local copy of www.wschnei.de/digit-related-numbers/nozeros.html), as of Jan 30 2003.
FORMULA
a(n) = 11^A030706(n).
A195946 = A001020 intersect A052382.
MATHEMATICA
Select[11^Range[0, 50], DigitCount[#, 10, 0]==0&] (* Harvey P. Dale, Jan 27 2014 *)
PROG
(PARI) for( n=0, 9999, is_A052382(11^n) && print1(11^n, ", "))
(Magma) [11^n: n in [0..3*10^4] | not 0 in Intseq(11^n)]; // Bruno Berselli, Sep 26 2011
CROSSREFS
For the zeroless numbers (powers x^n), see A195942, A195943, A238938, A238939, A238940, A195948, A238936, A195908, A195945.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
Sequence in context: A374725 A325203 A055479 * A003590 A072051 A092846
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Sep 25 2011
EXTENSIONS
Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.
STATUS
approved