[go: up one dir, main page]

login
A195301
Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).
4
6, 3, 4, 0, 5, 0, 6, 7, 1, 1, 2, 4, 4, 2, 8, 8, 5, 0, 6, 8, 5, 0, 5, 2, 8, 8, 5, 3, 4, 3, 9, 6, 2, 2, 1, 3, 1, 9, 8, 9, 1, 0, 0, 0, 3, 5, 6, 9, 5, 5, 3, 6, 1, 2, 9, 8, 9, 9, 8, 5, 8, 4, 0, 1, 0, 1, 7, 7, 1, 7, 5, 8, 3, 2, 3, 6, 9, 1, 8, 9, 6, 9, 6, 3, 2, 4, 9, 4, 5, 6, 6, 6, 3, 1, 1, 0, 0, 0
OFFSET
0,1
COMMENTS
See A195284 for definitions and a general discussion.
LINKS
EXAMPLE
(A)=0.63405067112442885068505288534396221319891000...
MATHEMATICA
a = 1; b = 1; c = Sqrt[2];
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (A) A195301 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B)=(A) *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A163960 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, I), A195303 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 14 2011
STATUS
approved