[go: up one dir, main page]

login
A195258
Triangle read by rows: row n gives the n primes corresponding to A187825.
0
3, 2, 3, 293, 307, 317, 1373, 1451, 1481, 1487, 6947, 7109, 7331, 7349, 7411, 7173, 8423, 8467, 8681, 8693, 8713, 6221, 6269, 6311, 6379, 6521, 6529, 6551, 44221, 48497, 49307, 50111, 50177, 50497, 50527, 50543, 14813, 14891, 14957, 15053, 15161, 15187, 15227
OFFSET
1,1
EXAMPLE
Triangle begins:
n = 1 and k = 3 -> [3]
n = 2 and k = 2 -> [2, 3]
n = 3 and k = 140 -> [293, 307, 317]
n = 4 and k = 560 -> [1373, 1451, 1481, 1487]
The sequence A187825 gives the values k.
MAPLE
with(numtheory):for n from 0 to 12
do:ii:=0:for k from 1 to 4000000 while(ii=0) do:s:=0:x:=divisors(k):n1:=nops(x):it:=0:lst:={}: for a from n1 by -1 to 1 do:s:=s+x[a]:if type(s, prime)=true then it:=it+1:lst:=lst union {s}:else fi:od: if it = n then ii:=1: print(lst) :else fi:od:od:
MATHEMATICA
lst={}; Do[lst=Union[lst, {Prime[i]}], {i, 1, 5000}]; a[n_]:=Catch[For[k=1, True, k++, cnt=Count[Accumulate[Divisors[k]//Reverse], _?PrimeQ]; If[cnt==n, Print[Intersection[Accumulate[Divisors[k]//Reverse], lst]]; Throw[k]]]]; Table[a[n], {n, 0, 10}]
CROSSREFS
Cf. A187825.
Sequence in context: A109591 A143932 A304496 * A370450 A070471 A070690
KEYWORD
nonn,tabl
AUTHOR
Michel Lagneau, Jan 02 2013
STATUS
approved