[go: up one dir, main page]

login
A109591
E.g.f.: 5x/(-1+1/(-1+1/(-1+1/(-1+log(1+5x))))) = -5x[3-2log(1+5x)]/[5-3log(1+5x)].
0
0, -3, 2, 3, 56, -360, 12420, -303030, 10226880, -381416040, 16356484800, -781899663600, 41374146038400, -2397894225620400, 151087293619567200, -10281399143079546000, 751437976013183232000, -58702720576973120928000, 4881171236699697126048000
OFFSET
0,2
REFERENCES
C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.
MAPLE
G:=5*x/(-1+1/(-1+1/(-1+1/(-1+log(1+5*x))))): Gser:=series(G, x=0, 21): 0, seq(n!*coeff(Gser, x^n), n=1..18); # yields the signed sequence
MATHEMATICA
g[x_] = FullSimplify[x/(-1 + 1/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))))] h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]
CROSSREFS
Sequence in context: A139170 A139075 A089750 * A143932 A304496 A195258
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 29 2005
STATUS
approved