[go: up one dir, main page]

login
A195037
17 times triangular numbers.
2
0, 17, 51, 102, 170, 255, 357, 476, 612, 765, 935, 1122, 1326, 1547, 1785, 2040, 2312, 2601, 2907, 3230, 3570, 3927, 4301, 4692, 5100, 5525, 5967, 6426, 6902, 7395, 7905, 8432, 8976, 9537, 10115, 10710, 11322, 11951, 12597, 13260, 13940, 14637, 15351, 16082, 16830
OFFSET
0,2
COMMENTS
Related to the primitive Pythagorean triple [5, 12, 13].
Sequence found by reading the line from 0, in the direction 0, 17, ..., and the same line from 0, in the direction 0, 51, ..., in the Pythagorean spiral whose edges have length A195031 and whose vertices are the numbers A195032. This is the main diagonal of the square spiral.
Sum of the numbers from 8n to 9n. - Wesley Ivan Hurt, Dec 23 2015
FORMULA
a(n) = (17*n^2 + 17*n)/2 = 17*n*(n+1)/2 = 17*A000217(n).
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 17*x/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
a(n) = Sum_{i=8n..9n} i. (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/17.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/17.
Product_{n>=1} (1 - 1/a(n)) = -(17/(2*Pi))*cos(5*Pi/(2*sqrt(17))).
Product_{n>=1} (1 + 1/a(n)) = (17/(2*Pi))*cos(3*Pi/(2*sqrt(17))). (End)
MAPLE
A195037:=n->17*n*(n+1)/2: seq(A195037(n), n=0..60); # Wesley Ivan Hurt, Dec 23 2015
MATHEMATICA
17*Accumulate[Range[0, 50]] (* Harvey P. Dale, May 31 2014 *)
Table[17*n*(n + 1)/2, {n, 0, 50}] (* Wesley Ivan Hurt, Dec 23 2015 *)
PROG
(Magma) [17*n*(n+1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 23 2015
(PARI) a(n)=17*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Bisection of A195032.
Sequence in context: A160076 A003124 A005570 * A214660 A258598 A223906
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 12 2011
STATUS
approved