[go: up one dir, main page]

login
A194909
Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion.
4
1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 15, 14, 13, 12, 11, 21, 20, 19, 18, 17, 16, 28, 27, 26, 25, 24, 23, 22, 35, 34, 33, 32, 31, 30, 29, 36, 44, 42, 41, 40, 39, 38, 37, 45, 43, 54, 52, 50, 49, 48, 47, 46, 55, 53, 51, 65, 63, 61, 59, 58, 57, 56, 66, 64, 62, 60, 77, 75, 73
OFFSET
1,2
COMMENTS
See A194832 for a general discussion.
EXAMPLE
Northwest corner:
1...3...6...10..15..21
2...5...9...14..20..27
4...8...13..19..26..33
7...12..18..25..32..40
11..17..24..31..39..48
16..23..30..38..47..57
MATHEMATICA
r = -Pi;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 20}]] (* A194908 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194909 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194910 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 05 2011
STATUS
approved