OFFSET
1,2
COMMENTS
The terms of this sequence are Fibonacci double factorial numbers.
a(n) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio. For the decimal expansion of C2 see A194159.
Product of first n terms of the binomial transform of the Fibonacci numbers. - Vaclav Kotesovec, Oct 29 2017
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..70
Eric Weisstein, Fibonorial, Mathworld.
FORMULA
a(n) = Product_{i=1..n} F(2*i) with F(n) = A000045(n).
a(n) = A123029(2*n).
a(n+1)/a(n) = A001906(n+1).
0 = a(n)*(3*a(n+2)^2 - a(n+1)*a(n+3)) -a(n+1)^2*a(n+2) for all n>=0. - Michael Somos, Oct 06 2014
MATHEMATICA
FoldList[Times, Fibonacci[2 Range[20]]] (* or *)
Table[Round[GoldenRatio^(n(n-1)) QFactorial[n, 1/GoldenRatio^4]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
Table[Product[Sum[Binomial[m, k]*Fibonacci[k], {k, 1, m}], {m, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 29 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, prod(k=1, n, fibonacci(2*k)))}; /* Michael Somos, Oct 06 2014 */
(Magma) [&*[Fibonacci(2*i): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Sep 15 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Aug 21 2011
STATUS
approved