OFFSET
0,4
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-14,15,-5,-4,4,-1).
FORMULA
a(n) = 6*a(n-1)-14*a(n-2)+15*a(n-3)-5*a(n-4)-4*a(n-5)+4*a(n-6)-a(n-7).
G.f.: (x^2-x+1)*(x^4-5*x^3+9*x^2-5*x+1) / ((x-1)^5*(x^2+x-1)). - Colin Barker, May 12 2014
MATHEMATICA
q = x^2; s = x + 1; z = 40;
p[0, x] := 1;
p[n_, x_] := x*p[n - 1, x] + n (-1 + n^2) (-4 + n^2)/120;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A193048 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A193049 *)
PROG
(PARI) Vec((x^2-x+1)*(x^4-5*x^3+9*x^2-5*x+1)/((x-1)^5*(x^2+x-1)) + O(x^100)) \\ Colin Barker, May 12 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 15 2011
STATUS
approved