[go: up one dir, main page]

login
A191134
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x-1 are in a.
4
1, 3, 4, 10, 11, 13, 15, 31, 34, 39, 40, 43, 46, 51, 59, 94, 103, 118, 121, 123, 130, 135, 139, 154, 155, 159, 171, 178, 183, 203, 235, 283, 310, 355, 364, 370, 375, 391, 406, 411, 418, 463, 466, 471, 478, 483, 491, 514, 519, 535, 539, 550, 555, 610, 615, 619, 635, 683, 706, 711, 731, 811, 850, 931, 939, 1066, 1093, 1111, 1126
OFFSET
1,2
COMMENTS
See A101113/
LINKS
MATHEMATICA
h = 3; i = 1; j = 4; k = -1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191134 *)
b = (a - 1)/3; c = (a + 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191192 *)
e = Intersection[c, r] (* A191193 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191134 n = a191134_list !! (n-1)
a191134_list = f $ singleton 1
where f s = m : (f $ insert (3*m+1) $ insert (4*m-1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A139063 A224853 A225571 * A196101 A200816 A327300
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved