[go: up one dir, main page]

login
A190263
Continued fraction of (3 + sqrt(9 + 12*sqrt(3)))/6.
2
1, 2, 2, 3, 1, 3, 2, 1, 1, 1, 1, 8, 2, 17, 2, 3, 10, 2, 23, 1, 4, 1, 2, 1, 4, 1, 2, 35, 4, 1, 1, 1, 2, 5, 4, 1, 1, 3, 17, 3, 2, 1, 3, 1, 3, 1, 1, 10, 3, 1, 13, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 15, 3, 2, 5, 6, 2, 1, 15, 132, 4, 2, 1, 1, 19, 1, 4, 1, 2, 5, 2, 16, 2, 1, 15, 5, 2, 10, 13, 1, 1
OFFSET
1,2
COMMENTS
Equivalent to the periodic continued fraction [1, x, 1, x,...], where x=sqrt(3). (See A188635.)
LINKS
MATHEMATICA
r=3^(1/2)
FromContinuedFraction[{1, r, {1, r}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190263 *)
RealDigits[N[%%, 120]] (* A190262 *)
N[%%%, 40]
ContinuedFraction[(3 + Sqrt[9 + 12*Sqrt[3]])/6, 100] (* G. C. Greubel, Dec 26 2017 *)
PROG
(PARI) contfrac((3+sqrt(9+sqrt(432)))/6) \\ Charles R Greathouse IV, Jul 29 2011
(Magma) ContinuedFraction((3 + sqrt(9 + 12*sqrt(3)))/6); // G. C. Greubel, Dec 28 2017
CROSSREFS
Sequence in context: A083040 A083899 A339461 * A144911 A233431 A160650
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved