[go: up one dir, main page]

login
A189663
Partial sums of A189661.
14
0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 31
OFFSET
1,4
COMMENTS
See A189661.
LINKS
FORMULA
a(n) = 2*(n-1)-floor((n-1)*r), where r = (1+sqrt(5))/2 (the golden ratio). - corrected by R. J. Mathar, Sep 11 2011
a(n) = a(1+a(n-2))+a(n-1-a(n-2)), n>2. - Frank Ruskey, Dec 10 2011
a(1) = 0, a(2) = 1; a(n) = n - a(n-1) - a(n-a(n-1)) for n > 2. - Altug Alkan, Jun 24 2017
a(n) = ceiling((n-1)/r^2), where r = (1+sqrt(5))/2. - Jeffrey Shallit, Jul 02 2018
a(n) = A060144(n-1) + sign(abs(n-1)). - Primoz Pirnat, Dec 29 2020
MATHEMATICA
(See A189661.)
Table[2 (n - 1) - Floor[(n - 1) (1 + Sqrt[5]) / 2], {n, 100}] (* Vincenzo Librandi, Jun 26 2017 *)
PROG
(Python)
l=[0, 0, 1]
for n in range(3, 101):
l.append(n - l[n - 1] - l[n - l[n - 1]])
print(l[1:]) # Indranil Ghosh, Jun 24 2017, after Altug Alkan
(Python)
from math import isqrt
def A189663(n): return (n-1<<1)-(n-1+isqrt(5*(n-1)**2)>>1) # Chai Wah Wu, Aug 09 2022
(Magma) [2*(n-1)-Floor((n-1)*(1+Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Jun 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 25 2011
STATUS
approved