[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188596 Decimal expansion of Product_{primes p} (1-1/p)^(-2)*(1-(2+A102283(p))/p). 1
1, 5, 2, 1, 7, 3, 1, 5, 3, 5, 0, 7, 5, 7, 0, 5, 8, 1, 8, 8, 4, 1, 9, 5, 9, 4, 3, 4, 2, 9, 1, 3, 1, 1, 6, 9, 4, 0, 8, 0, 8, 0, 2, 7, 9, 5, 9, 4, 5, 4, 5, 0, 8, 6, 0, 5, 0, 8, 1, 5, 7, 9, 1, 8, 4, 5, 8, 1, 7, 3, 8, 5, 1, 3, 5, 6, 8, 2, 0, 3, 3, 0, 1, 0, 8, 1, 1, 4, 6, 5, 9, 5, 6, 5, 6, 4, 5, 4, 2, 7, 8, 7, 6, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the principal scale factor in an estimate of the number of primes p not exceeding N such that p^2+p+1 is also prime [Bateman-Horn].
A102283 in the definition plays the role of the Dirichlet character modulo 3.
After splitting the product into the three modulo-3 classes of primes, this constant turns out to be the product of four factors.
One factor as mentioned by Bateman and Horn is the inverse of A073010.
The second factor is 3/4 arising from the prime 3 which is the sole prime in the class == 0 (mod 3).
The third factor is product_{p == 1 (mod 3)} (1-(3p-1)/(p-1)^3) = 0.8675121817.. which is the constant C(m=3,n=1,s=3) of the arXiv preprint, basically the C(3) variant of A065418 reduced to the modulo class.
The final factor is product_{p == 2 (mod 3)} (1+1/(p^2-1)) = 1/product_{p == 2 (mod 3)} (1-1/p^2) = 1.41406439089214763.. which is the constant zeta(m=3,n=2,s=2) of the preprint and mentioned in A175646.
LINKS
Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367, constant C.
H. Davenport and A. Schinzel, A note on certain arithmetical constants, Illinois Math. J. 10 (2) (1966), 181-185
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015.
EXAMPLE
Equals 1.5217315350757058188419.. = 0.92003856361849186... / A073010 .
MAPLE
a073010 := evalf(Pi/3/sqrt(3)) ;
Cm3n0s2 := 1-1/(3-1)^2 ;
Cm3n1s3 := 0.867512181712394919089076584762888869720269526863 ;
Zm3n2s2 := 1.4140643908921476375655018190798293799076950693931 ;
Cm3n0s2*Cm3n1s3*Zm3n2s2/a073010 ;
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[3^(5/2)*Zs[3, 1, 3]*Z[3, 2, 2]/(4*Pi), digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)
CROSSREFS
Cf. A053182.
Sequence in context: A212879 A276524 A111395 * A199622 A156730 A159549
KEYWORD
nonn,cons,less
AUTHOR
R. J. Mathar, Apr 05 2011
EXTENSIONS
More terms from Vaclav Kotesovec, Jan 16 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)