[go: up one dir, main page]

login
A159549
Decimal expansion of (201+20*sqrt(2))/199.
4
1, 1, 5, 2, 1, 8, 2, 2, 6, 7, 5, 7, 5, 1, 8, 5, 4, 3, 2, 0, 4, 0, 3, 7, 0, 7, 2, 6, 0, 5, 1, 2, 2, 5, 9, 3, 7, 5, 4, 4, 6, 9, 0, 6, 4, 0, 7, 4, 1, 4, 0, 1, 8, 1, 6, 3, 9, 9, 6, 6, 6, 3, 0, 5, 3, 2, 5, 7, 0, 1, 7, 5, 6, 6, 2, 9, 3, 5, 7, 4, 9, 1, 3, 4, 1, 7, 4, 7, 4, 9, 0, 8, 8, 7, 2, 0, 0, 1, 5, 8, 0, 6, 3, 8, 2
OFFSET
1,3
COMMENTS
lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}, b = A129993.
lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}, b = A159548.
LINKS
FORMULA
(201+20*sqrt(2))/199 = (20+sqrt(2))/(20-sqrt(2)).
EXAMPLE
(201+20*sqrt(2))/199 = 1.15218226757518543204...
MAPLE
with(MmaTranslator[Mma]): Digits:=100:
RealDigits(evalf((201+20*sqrt(2))/199))[1]; # Muniru A Asiru, Mar 31 2018
MATHEMATICA
RealDigits[(201+20*Sqrt[2])/199, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
PROG
(PARI) (201+20*sqrt(2))/199 \\ G. C. Greubel, Mar 30 2018
(Magma) (201 + 20*Sqrt(2))/199 // G. C. Greubel, Mar 30 2018
CROSSREFS
Cf. A129993, A159548, A002193 (decimal expansion of sqrt(2)), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).
Sequence in context: A188596 A199622 A156730 * A011394 A321289 A318380
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Apr 14 2009
STATUS
approved