[go: up one dir, main page]

login
A187396
a(n) = floor(s*n), where s =-2 + sqrt(10); complement of A187395.
3
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 115, 116
OFFSET
1,2
COMMENTS
A187395 and A187396 are the Beatty sequences based on r = 4 + sqrt(10) and s = -2 + sqrt(10); 1/r + 1/s = 1.
FORMULA
a(n) = floor(s*n), where s = -2 + sqrt(10).
MATHEMATICA
r=4+10^(1/2); s=-2+10^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187395 *)
Table[Floor[s*n], {n, 1, 80}] (* A187396 *)
PROG
(Python)
from sympy import integer_nthroot
def A187396(n): return integer_nthroot(10*n**2, 2)[0]-2*n # Chai Wah Wu, Mar 17 2021
CROSSREFS
Cf. A187395.
Sequence in context: A022551 A172251 A286997 * A020659 A047304 A020658
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
EXTENSIONS
Edited by Clark Kimberling, Mar 17 2021
STATUS
approved