[go: up one dir, main page]

login
A184817
Numbers m such that prime(m) is of the form k+floor(kr/t)+floor(ks/t), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
4
5, 6, 8, 9, 11, 15, 17, 20, 25, 27, 28, 31, 32, 33, 35, 38, 43, 46, 47, 48, 51, 58, 61, 62, 63, 66, 67, 73, 74, 75, 77, 79, 85, 87, 88, 89, 94, 99, 100, 102, 104, 107, 110, 112, 116, 118, 120, 121, 122, 127, 128, 130, 132, 134, 136, 141, 144, 146, 147, 151, 153, 154, 155, 156, 163, 164, 166, 167, 170, 175, 177, 179, 181, 184, 186, 188, 194, 196, 199, 201, 202, 203, 204, 206, 209, 210, 213, 216, 218, 221, 223, 225, 226, 227, 228
OFFSET
1,1
COMMENTS
See A184812 and A184814.
LINKS
MATHEMATICA
r=2^(1/2); s=3^(1/2); t=5^(1/2);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A184812 *)
Table[b[n], {n, 1, 120}] (* A184813 *)
Table[c[n], {n, 1, 120}] (* A184814 *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1;
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2;
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 600}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4;
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5;
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 600}]; t6
t7={}; Do[If[PrimeQ[c[n]], AppendTo[t7, c[n]]], {n, 1, 600}]; t7;
t8={}; Do[If[PrimeQ[c[n]], AppendTo[t8, n]], {n, 1, 600}]; t8;
t9={}; Do[If[MemberQ[t7, Prime[n]], AppendTo[t9, n]], {n, 1, 600}]; t9
(* Lists t3, t6, t9 match A184815, A184816, A184817. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved