[go: up one dir, main page]

login
A183108
Numbers m such that sum of divisors of m and sum of palindromic divisors of m are both palindromic.
0
1, 2, 3, 4, 5, 7, 43, 130, 146, 166, 201, 205, 211, 221, 241, 244, 251, 271, 274, 281, 314, 325, 365, 388, 422, 433, 443, 463, 489, 519, 559, 633, 685, 793, 827, 857, 877, 887, 1841, 2021, 2111, 2221, 2284, 2305, 2441, 2551, 2561, 2666, 2751, 2881
OFFSET
1,2
COMMENTS
Numbers m such that A000203(m) and A088000(m) are both palindromic.
EXAMPLE
a(8) = 130, divisors of 130: 1, 2, 5, 10, 13, 26, 65, 130; palindromic divisors of 130: 1, 2, 5; A000203(130) = 252, A088000(130) = 8; both numbers are palindromic.
PROG
(Sage) is_palindrome = lambda n, base=10: n.str(base) == n.str(base)[::-1]
A000203 = sigma
A088000 = lambda n: sum(d for d in divisors(n) if is_palindrome(d))
is_A183108 = lambda n: is_palindrome(A000203(n)) and is_palindrome(A088000(n)) # D. S. McNeil, Dec 28 2010
CROSSREFS
Sequence in context: A135709 A263043 A028980 * A096841 A029963 A259389
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Dec 25 2010
STATUS
approved