OFFSET
1,2
COMMENTS
The original definition was "Interleaved multiples of the positive integers".
This sequence is A_1 where A_k = Interleave(k*counting,A_(k+1)).
Show your friends the first 15 terms and see if they can guess term number 16. (If you want to be fair, you might want to show them A003602 first.) - David Spies, Sep 17 2012
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..8191
FORMULA
a((2*n-1)*2^p) = n*(p+1), p >= 0.
a(n) = A001511(n)*A003602(n). - L. Edson Jeffery, Nov 21 2015. (Follows directly from above formula.) - Antti Karttunen, Jan 19 2016
MAPLE
nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := n*(p+1) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 21 2013
PROG
(Haskell)
interleave (hdx : tlx) y = hdx : interleave y tlx
oeis003602 = interleave [1..] oeis003602
oeis181988 = interleave [1..] (zipWith (+) oeis003602 oeis181988)
(Python)
from itertools import count
def interleave(A):
A1=next(A)
A2=interleave(A)
while True:
yield next(A1)
yield next(A2)
def multiples(k):
return (k*i for i in count(1))
interleave(multiples(k) for k in count(1))
(Python)
def A181988(n): return (m:=(n&-n).bit_length())*((n>>m)+1) # Chai Wah Wu, Jul 12 2022
(Scheme, with memoization-macro definec)
;; Antti Karttunen, Jan 19 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
David Spies, Apr 04 2012
EXTENSIONS
Definition replaced by a formula provided by David Spies, Sep 17 2012. N. J. A. Sloane, Nov 22 2015
STATUS
approved