OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
FORMULA
L.g.f.: Sum_{n>=1} [ Sum_{k>=0} binomial(n+k-1,k)^3 *x^k ] *x^n/n.
Logarithmic derivative of A181066.
Recurrence: n^2*a(n) = - (n^2-17*n+10)*a(n-1) + 48*(n^2-3*n+1)*a(n-2) + 16*(n-3)*(11*n-36)*a(n-3) + 128*(n-4)^2*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(3)*8^n/(6*Pi*n). - Vaclav Kotesovec, Oct 24 2012
a(n) = 3F2([1-n, 1-n, -n], [1, 1], -1). - Pierre-Louis Giscard, Jul 20 2013
a(n) = n * hypergeometric([-n+1,-n+1,-n+1], [1,2], -1) for n > 0. - Emanuele Munarini, Sep 27 2016
a(n) = Sum_{k=0..n-1} ((n-k)/n)^2 * binomial(n,k)^3. - G. C. Greubel, Apr 05 2021
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 95*x^4/4 + 606*x^5/5 + ...
which equals the series:
L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...)*x
+ (1 + 2^3*x + 3^3*x^2 + 4^3*x^3 + 5^3*x^4 + 6^3*x^5 + ...)*x^2/2
+ (1 + 3^3*x + 6^3*x^2 + 10^3*x^3 + 15^3*x^4 + 21^3*x^5 + ...)*x^3/3
+ (1 + 4^3*x + 10^3*x^2 + 20^3*x^3 + 35^3*x^4 + 56^3*x^5 + ...)*x^4/4
+ (1 + 5^3*x + 15^3*x^2 + 35^3*x^3 + 70^3*x^4 + 126^3*x^5 + ...)*x^5/5
+ (1 + 6^3*x + 21^3*x^2 + 56^3*x^3 + 126^3*x^4 + 252^3*x^5 + ...)*x^6/6 + ...
Exponentiation yields the g.f. of A181066:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 157*x^5 + 865*x^6 + ... + A181066(n)*x^n + ...
MAPLE
A181067:= n-> add(((n-k)/n)^2*binomial(n, k)^3, k=0..n-1); seq(A181067(n), n=1..25); # G. C. Greubel, Apr 05 2021
MATHEMATICA
Table[Sum[Binomial[n-1, k]^2*Binomial[n, k], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 24 2012 *)
Table[HypergeometricPFQ[{1-n, 1-n, -n}, {1, 1}, -1], {n, 1, 20}] (* Pierre-Louis Giscard, Jul 20 2013 *)
PROG
(PARI) {a(n)=sum(k=0, n-1, binomial(n-1, k)^3*n/(n-k))}
(PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^3*x^k)*x^m/m)+x*O(x^n), n)}
(Maxima) makelist(hypergeometric([-n+1, -n+1, -n], [1, 1], -1), n, 0, 12); /* Emanuele Munarini, Sep 27 2016 */
(Magma) [(&+[ ((n-k)/n)^2*Binomial(n, k)^3 : k in [0..n-1]]): n in [1..25]]; // G. C. Greubel, Apr 05 2021
(Sage) [sum( ((n-k)/n)^2*binomial(n, k)^3 for k in (0..n-1) ) for n in (1..25)] # G. C. Greubel, Apr 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2010
STATUS
approved