[go: up one dir, main page]

login
A179748
Triangle T(n,k) read by rows. T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1).
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 5, 4, 1, 1, 1, 2, 6, 9, 5, 1, 1, 1, 2, 6, 15, 14, 6, 1, 1, 1, 2, 6, 20, 29, 20, 7, 1, 1, 1, 2, 6, 23, 49, 49, 27, 8, 1, 1, 1, 2, 6, 24, 71, 98, 76, 35, 9, 1, 1, 1, 2, 6, 24, 91, 169, 174, 111, 44, 10, 1, 1, 1, 2, 6, 24, 106, 259, 343, 285, 155, 54, 11, 1
OFFSET
1,9
COMMENTS
Recurrence is half of the recurrence for divisibility in A051731. That is, without subtracting (Sum_{i=1..k-1} T(n-i,k)).
Rows tend to factorial numbers.
Row sums are A177510.
FORMULA
T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1).
EXAMPLE
Triangle begins:
01: 1;
02: 1, 1;
03: 1, 1, 1;
04: 1, 1, 2, 1;
05: 1, 1, 2, 3, 1;
06: 1, 1, 2, 5, 4, 1;
07: 1, 1, 2, 6, 9, 5, 1;
08: 1, 1, 2, 6, 15, 14, 6, 1;
09: 1, 1, 2, 6, 20, 29, 20, 7, 1;
10: 1, 1, 2, 6, 23, 49, 49, 27, 8, 1;
11: 1, 1, 2, 6, 24, 71, 98, 76, 35, 9, 1;
12: 1, 1, 2, 6, 24, 91, 169, 174, 111, 44, 10, 1;
13: 1, 1, 2, 6, 24, 106, 259, 343, 285, 155, 54, 11, 1;
14: 1, 1, 2, 6, 24, 115, 360, 602, 628, 440, 209, 65, 12, 1;
15: 1, 1, 2, 6, 24, 119, 461, 961, 1230, 1068, 649, 274, 77, 13, 1;
16: 1, 1, 2, 6, 24, 120, 551, 1416, 2191, 2298, 1717, 923, 351, 90, 14, 1;
17: 1, 1, 2, 6, 24, 120, 622, 1947, 3606, 4489, 4015, 2640, 1274, 441, 104, 15, 1;
...
PROG
(Excel cell formula European dot comma style) =if(column()=1; 1; if(row()>=column(); sum(indirect(address(row()-column()+1; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4)); 0))
(Sage)
@CachedFunction
def T(n, k): # A179748
if n == 0: return int(k==0);
if k == 1: return int(n>=1);
return sum( T(n-i, k-1) for i in [1..k-1] );
for n in [1..15]: print([ T(n, k) for k in [1..n] ])
# Joerg Arndt, Mar 24 2014
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Jul 26 2010
STATUS
approved