[go: up one dir, main page]

login
A179087
Triangle T(n,k) read by rows: the real part of the coefficient [x^k] of (1-x)^(n+1) * Sum_{s>=0} ((2*s + 1 + 2*i)^n)*x^s, where i is the imaginary unit.
1
1, 1, 1, -3, 14, -3, -11, 35, 35, -11, -7, -84, 566, -84, -7, 41, -843, 2722, 2722, -843, 41, 117, -2854, 763, 50028, 763, -2854, 117, 29, -4681, -80211, 407423, 407423, -80211, -4681, 29, -527, 4504, -720740, 1560616, 8634214, 1560616, -720740, 4504, -527, -1199, 68393, -4275340, -6925948, 104031374, 104031374, -6925948, -4275340, 68393, -1199, 237, 338918, -19903639, -195090616, 799237802, 2546725796, 799237802, -195090616
OFFSET
0,4
EXAMPLE
Triangle begins
1;
1, 1;
-3, 14, -3;
-11, 35, 35, -11;
-7, -84, 566, -84, -7;
41, -843, 2722, 2722, -843, 41;
117, -2854, 763, 50028, 763, -2854, 117;
29, -4681, -80211, 407423, 407423, -80211, -4681, 29;
MAPLE
A179087 := proc(n, k)
(1-x)^(n+1)*add( (2*s+1+2*I)^n*x^s, s=0..k) ;
expand(%) ;
coeftayl(%, x=0, k) ;
Re(%) ;
end proc: # R. J. Mathar, Oct 06 2011
CROSSREFS
Cf. A000165 (row sums), A006495 (column k=0).
Sequence in context: A016549 A147584 A163357 * A217013 A058991 A341860
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Jun 28 2010
EXTENSIONS
Sequence replaced with one that is more likely to occur in practice by R. J. Mathar, Oct 06 2011
STATUS
approved