OFFSET
0,1
COMMENTS
Companion to A145910.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) + 6 + 9*n.
a(n) = A178971(3*n+2).
G.f.: (-5-5*x+x^2)/(x-1)^3. [Adapted to the offset by Bruno Berselli, Apr 14 2011]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 19 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/3.
Sum_{n>=0} (-1)^n/a(n) = 4*Pi/(9*sqrt(3)) - 1/3 - 4*log(2)/9. (End)
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*exp(x)*(5 + 15*x + 9*x^2/2).
MAPLE
MATHEMATICA
f[n_] := (3 n + 2) (3 n + 5)/2; Array[f, 45, 0]
LinearRecurrence[{3, -3, 1}, {5, 20, 44}, 50] (* Harvey P. Dale, Apr 19 2013 *)
PROG
(Magma) [n*(n+3)/2: n in [2..135 by 3]]; // Bruno Berselli, Apr 14 2011
(PARI) a(n)=(3*n+2)*(3*n+5)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Paul Curtz, Jan 02 2011
STATUS
approved