[go: up one dir, main page]

login
A176487
Triangle t(n,m) = binomial(n,m) + A008292(n+1,m+1)-1 read by rows.
6
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 71, 29, 1, 1, 61, 311, 311, 61, 1, 1, 125, 1205, 2435, 1205, 125, 1, 1, 253, 4313, 15653, 15653, 4313, 253, 1, 1, 509, 14635, 88289, 156259, 88289, 14635, 509, 1, 1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 7, 28, 131, 746, 5097, 40440, 363127, 3629302, 39917813,.. = 2^n-n+A033312(n+1).
FORMULA
t(n,m) = A007318(n,m)+A008292(n+1,m+1)-1 , 0<=m<=n.
t(n,m) = 2*A141689(n+1,m+1)-1. - R. J. Mathar, Jan 19 2011
EXAMPLE
1;
1, 1;
1, 5, 1;
1, 13, 13, 1;
1, 29, 71, 29, 1;
1, 61, 311, 311, 61, 1;
1, 125, 1205, 2435, 1205, 125, 1;
1, 253, 4313, 15653, 15653, 4313, 253, 1;
1, 509, 14635, 88289, 156259, 88289, 14635, 509, 1;
1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875, 1021, 1;
1, 2045, 152681, 2203607, 9738323, 15724499, 9738323, 2203607, 152681, 2045, 1;
MAPLE
A176487 := proc(n, k)
binomial(n, k)+A008292(n+1, k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
MATHEMATICA
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 19 2010
STATUS
approved