[go: up one dir, main page]

login
A171646
a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).
2
1, 1, 1, 2, 4, 6, 9, 15, 25, 35, 49, 77, 121, 165, 225, 330, 484, 660, 900, 1260, 1764, 2352, 3136, 4312, 5929, 7777, 10201, 13635, 18225, 23760, 30976, 40656, 53361, 68607, 88209, 114345, 148225, 188650, 240100, 307230
OFFSET
1,4
COMMENTS
A006498 = analogous sequence using the Fibonacci numbers.
A171645 = .............................Primes, analogous formula.
A010551 = .............................Factorial numbers, analogous formula.
FORMULA
a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).
EXAMPLE
a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
MAPLE
A171646t := proc(n)
local nh;
nh := floor(n/2) ;
combinat[numbpart](nh)/combinat[numbpart](nh-1) ;
end proc:
A171646 := proc(n)
mul(A171646t(i), i=2..n) ;
end proc:
1, seq(A171646(n), n=2..40) ; # R. J. Mathar, Jul 21 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Dec 13 2009
EXTENSIONS
Corrected by R. J. Mathar, Jul 21 2015
STATUS
approved