[go: up one dir, main page]

login
A171641
Non-deficient numbers with even sigma which are not Zumkeller.
12
738, 748, 774, 846, 954, 1062, 1098, 1206, 1278, 1314, 1422, 1494, 1602, 1746, 1818, 1854, 1926, 1962, 2034, 2286, 2358, 2466, 2502, 2682, 2718, 2826, 2934, 3006, 3114, 3222, 3258, 3438, 3474, 3492, 3546, 3582, 3636, 3708, 3798, 3852, 3924
OFFSET
1,1
COMMENTS
Numbers which are non-deficient (sigma(n) >= 2n) [A023196] such that sigma(n) [A000203] is even but which are not Zumkeller numbers [A083207], i.e., the positive factors of n cannot be partitioned into two disjoint parts so that the sums of the two parts are equal.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Chai Wah Wu)
Peter Luschny, Zumkeller Numbers.
MATHEMATICA
Reap[For[n = 2, n <= 4000, n = n+2, sigma = DivisorSigma[1, n]; If[sigma >= 2n && EvenQ[sigma] && Coefficient[ Times @@ (1 + x^Divisors[n]) // Expand, x, sigma/2] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 26 2013 *)
PROG
(Python)
from sympy import divisors
import numpy as np
A171641 = []
for n in range(2, 10**6):
....d = divisors(n)
....s = sum(d)
....if not s % 2 and 2*n <= s:
........d.remove(n)
........s2, ld = int(s/2-n), len(d)
........z = np.zeros((ld+1, s2+1), dtype=int)
........for i in range(1, ld+1):
............y = min(d[i-1], s2+1)
............z[i, range(y)] = z[i-1, range(y)]
............z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
........if z[ld, s2] != s2:
............A171641.append(n)
# Chai Wah Wu, Aug 19 2014
CROSSREFS
Sequence in context: A295984 A218596 A043633 * A251814 A320714 A251647
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 14 2009
STATUS
approved