OFFSET
0,2
COMMENTS
exp(2*arcsin(1)) is Aleksandr Gelfond's constant.
LINKS
Wikipedia, Gelfond's constant
FORMULA
a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014
From Vaclav Kotesovec, Nov 06 2014: (Start)
a(n) = (n^2 - 4*n + 8)*a(n-2).
a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.
(End)
MAPLE
seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014
MATHEMATICA
CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi, {n, 0, 20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
PROG
(PARI) for (n=0, 25, print(polcoeff(exp(2*asin(x)), n)*n!, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Oct 21 2009
STATUS
approved