[go: up one dir, main page]

login
A166740
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762956231, 4218828178657095936900, 194066096218226410811085
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170766, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^12 - 45*t^11 - 45*t^10 - 45*t^9 -45*t^8 -45*t^7 -45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
MATHEMATICA
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 24 2016 *)
CROSSREFS
Sequence in context: A165703 A166308 A166441 * A167100 A167644 A167862
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved