[go: up one dir, main page]

login
A163322
The 3rd Hermite Polynomial evaluated at n: H_3(n) = 8*n^3 - 12*n.
3
0, -4, 40, 180, 464, 940, 1656, 2660, 4000, 5724, 7880, 10516, 13680, 17420, 21784, 26820, 32576, 39100, 46440, 54644, 63760, 73836, 84920, 97060, 110304, 124700, 140296, 157140, 175280, 194764, 215640, 237956, 261760, 287100, 314024, 342580
OFFSET
0,2
FORMULA
a(n) = 8*n^3 - 12*n.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: -4*x*(1-14*x+x^2)/(x-1)^4.
MAPLE
A163322 := proc(n) orthopoly[H](3, n) ; end: seq(A163322(n), n=0..80) ; # R. J. Mathar, Jul 26 2009
MATHEMATICA
CoefficientList[Series[-4*x*(1-14*x+x^2)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 05 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, -4, 40, 180}, 40] (* Harvey P. Dale, Aug 14 2014 *)
PROG
(Magma) [8*n^3-12*n: n in [0..40]]; // Vincenzo Librandi, Mar 05 2012
(PARI) a(n)=8*n^3-12*n \\ Charles R Greathouse IV, Jan 29 2016
(Python)
from sympy import hermite
def A163322(n): return hermite(3, n) # Chai Wah Wu, Jan 06 2022
CROSSREFS
Sequence in context: A248964 A224086 A271013 * A238328 A009355 A355838
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jul 25 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
STATUS
approved