[go: up one dir, main page]

login
A163283
Triangle read by rows in which row n lists n+1 terms, starting with n^3 and ending with n^4, such that the difference between successive terms is equal to n^3 - n^2.
5
0, 1, 1, 8, 12, 16, 27, 45, 63, 81, 64, 112, 160, 208, 256, 125, 225, 325, 425, 525, 625, 216, 396, 576, 756, 936, 1116, 1296, 343, 637, 931, 1225, 1519, 1813, 2107, 2401, 512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096, 729, 1377, 2025, 2673, 3321, 3969
OFFSET
0,4
COMMENTS
The first term of row n is A000578(n) and the last term of row n is A000583(n).
FORMULA
T(n, k) = n^3 + k*(n^3 - n^2), for 0 <= k <= n, n >= 0. - G. C. Greubel, Dec 13 2016
EXAMPLE
Triangle begins:
0;
1, 1;
8, 12, 16;
27, 45, 63, 81;
64, 112, 160, 208, 256;
125, 225, 325, 425, 525, 625;
216, 396, 576, 756, 936, 1116, 1296;
343, 637, 931, 1225, 1519, 1813, 2107, 2401;
512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096;
729, 1377, 2025, 2673, 3321, 3969, 4617, 5265, 5913, 6561;
1000, 1900, 2800, 3700, 4600, 5500, 6400, 7300, 8200, 9100, 10000;
...
MATHEMATICA
Table[n^3 + k*(n^3 - n^2), {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 13 2016 *)
PROG
(PARI) A163283(n, k)=n^3 +k*(n^3 -n^2) \\ G. C. Greubel, Dec 13 2016
KEYWORD
easy,nonn,tabl
AUTHOR
Omar E. Pol, Jul 24 2009
EXTENSIONS
Edited by Omar E. Pol, Jul 25 2009
STATUS
approved