[go: up one dir, main page]

login
A160905
Right hand side of Pascal rhombus A059317
1
1, 1, 1, 4, 2, 1, 9, 8, 3, 1, 29, 22, 13, 4, 1, 82, 72, 42, 19, 5, 1, 255, 218, 146, 70, 26, 6, 1, 773, 691, 476, 261, 107, 34, 7, 1, 2410, 2158, 1574, 914, 428, 154, 43, 8, 1, 7499, 6833, 5122, 3177, 1603, 659, 212, 53, 9, 1, 23575, 21612, 16706, 10816, 5867, 2628, 967
OFFSET
0,4
COMMENTS
Riordan array (1/sqrt((1+x-x^2)(1-3x-x^2)), (1-x-x^2-sqrt((1+x-x^2)(1-3x-x^2))/(2x)). Can be factored as
(1/(1-x-x^2), x/(1-x-x^2))*(1/sqrt(1-4x^2),xc(x^2))=(1/(1-x^2),x/(1-x^2))*(1/(1-x),x/(1-x))*(1/sqrt(1-4x^2),xc(x^2))
and (1/(1-x^2),x/(1-x^2))*(1/sqrt(1-2x-3x^2),(1-x-sqrt(1-2x-3x^2))/(2x)).
Here, c(x) is the g.f. of the Catalan numbers A000108.
FORMULA
Number triangle T(n,k)=sum{i=0..n, (sum{j=0..n, C((n+j)/2,j)C(j,i)(1+(-1)^(n-j))/2})*C(i,(i-k)/2)(1+(-1)^(i-k))/2};
T(n,k)=sum{j=0..n, (C((n+j)/2,j)(1+(-1)^(n-j))/2)*sum{i=0..j, C(j,i)C(i,j-k-i)}}.
EXAMPLE
Triangle begins
1,
1, 1,
4, 2, 1,
9, 8, 3, 1,
29, 22, 13, 4, 1,
82, 72, 42, 19, 5, 1,
255, 218, 146, 70, 26, 6, 1
CROSSREFS
Sequence in context: A016691 A177347 A101020 * A208612 A183157 A211957
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 29 2009
STATUS
approved