OFFSET
0,1
REFERENCES
R. Courant, Differential and Integral Calculus Vol. I (Blackie&Son, 1937), ch. I.4, Example 5, p.29.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.
From Wesley Ivan Hurt, Aug 29 2015: (Start)
G.f.: (4-10*x+13*x^2-5*x^3)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>3. (End)
MAPLE
MATHEMATICA
Table[(2 n^3 + 9 n^2 + n + 24)/6, {n, 0, 60}]
CoefficientList[Series[(4 - 10*x + 13*x^2 - 5*x^3)/(x - 1)^4, {x, 0, 60}], x] (* Wesley Ivan Hurt, Aug 29 2015 *)
PROG
(Magma) [(2*n^3+9*n^2+n+24)/6: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) first(m)=vector(m, i, i--; (2*i^3 + 9*i^2 + i + 24) / 6) \\ Anders Hellström, Aug 29 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 26 2009
STATUS
approved