[go: up one dir, main page]

login
A155033
Matrix inverse of A155031.
5
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 2, 1, 1, 0, 4, 3, 2, 1, 1, 0, 10, 7, 4, 2, 1, 1, 0, 18, 13, 7, 4, 2, 1, 1, 0, 37, 26, 15, 8, 4, 2, 1, 1, 0, 71, 51, 29, 15, 8, 4, 2, 1, 1, 0, 146, 104, 59, 31, 16, 8, 4, 2, 1, 1, 0, 285, 203, 115, 61, 31, 16, 8, 4, 2, 1, 1, 0, 577, 411, 233, 123, 63, 32, 16, 8, 4, 2, 1, 1
OFFSET
1,12
FORMULA
Sum_{k=1..n} T(n,k) = A101173(n). - G. C. Greubel, Mar 15 2021
EXAMPLE
Table begins and row sums are:
1 = 1;
0, 1 = 1;
0, 1, 1 = 2;
0, 1, 1, 1 = 3;
0, 3, 2, 1, 1 = 7;
0, 4, 3, 2, 1, 1 = 11;
0, 10, 7, 4, 2, 1, 1 = 25;
0, 18, 13, 7, 4, 2, 1, 1 = 46;
0, 37, 26, 15, 8, 4, 2, 1, 1 = 94;
MATHEMATICA
A155031[n_, k_]:= If[k>n, 0, If[k==n, 1, If[k==1 || Mod[n, k]==0, 0, -1]]];
A155033:= Inverse[Table[A155031[n, k], {n, 30}, {k, 30}]];
Table[A155033[[n, k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2021 *)
CROSSREFS
Cf. A101173.
Sequence in context: A199324 A287576 A035103 * A283417 A107889 A138384
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Jan 19 2009
STATUS
approved